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1. Introduction

In [1] and [2] the filter operation acting upon nonlinear partial differential
equations (PDE) is examined by way of a PDE filter on a domain involv-
ing space/time and an additional dimension associated with a space scale
parameter. Under this approach it is possible to obtain an estimate for
the error associated with the equations satisfied by the filtered solutions
of the microscopic scale PDE given any approximation of the residuals.
This provides a condition of consistency. The PDE filter approach suggests
approximations for the residuals that are independent of empirical, or ar-
bitrary, parameters.

Here the main points of [1] and [2] are presented with some additional
issues addressed. An attempt is made to remain within a setting of general
nonlinear PDE systems. The filtered equations of reactive turbulent flows
are presented as an example.

2. Macroscopic Equations

Let Q C R 3 , T = (0, to) and ?7 cI = (0, j0), where to > 0 and 0 < o <«<1.
Define M C Rn such that M = x T x I. If Q C R3 is bounded
we denote the boundary of Q by Os. The summation convention of re-
peated upper and lower indices is adopted and for convenience the fol-
lowing ranges for the indicated indices should be assumed throughout:
a,b,c,d c {1,...,n - 2}; i,j,k,l c {1,...,n - 1}; p,q,r,s C {1,...,n}.
Here n (= 5) is the dimension of M and under this convention (xa)
(Xa)I<a<3 = (x,y,z), Xn- 1 = t, Xn = q. Hence we write, Q has a coor-
dinate system (xa), Q x T has a coordinate system (xi) = (xa, t) and M has
a coordinate system (xP) = (x, 77). The Greek indices are within the range:
a,,3, -y, 6 C {1, ... , N}, and are associated with the dependent variables, u',
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where N denotes the number of dependent variables. Throughout we shall
work with nondimensional variables.

The scale parameter q is defined by

S=(1)

where c = I/L represents the ratio of the microscopic length scale 1 (small-
est resolvable characteristic length scale) and the macroscopic length scale
of the domain L. The parameter 3 (> 0) is chosen to control the rate of
damping of fluctuations in the dependent variables. In most practical appli-
cations, c represents a characteristic grid size for a (nondimensional) spatial
discretization.

The set of smooth functions on M will be denoted by F(M). For any
f E F(M) the comma followed by a subscript fp will indicate the partial
derivative of f with respect to the coordinate xP. It should be noted that
much of the work that follows could be relaxed by replacing the smoothness
condition to one of differentiability of some finite order. It will be useful to
introduce a subset F(M) C F(M) which is defined as follows:

Definition 1. Any f E F(M) has the following properties:
(i) f E F(M)
(ii) For any u' E F(M), f = fn(u', uq, u,

Property (ii) of the definition states that any member of F(M) can be
expressed in a functional form explicitely independent of xp, u% and u%

It should be pointed out that F(M) is introduced here only to avoid some
notational difficulties. In [2] the ideas that follow are more conveniently
developed in the setting of contact manifolds where some of the restrictions
introduced here can be avoided.

For any u' E F(M) let cpc E F(M) be defined by

o= (- - L)u' (2)

where L is an elliptic differential operator on Q.
Define the vector field operator

U = L(u 3 a)o + (L(u')),jOY + (L(u1)),ijO~j (3)

with the notation

90 OW (4)•=08- 5. 3, 0 4

A calculation shows that

a -U)f Wf, f E F(M) (5)

(yaqU f= Wfi
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where
W = o + ±o, + Aso+ (6)

The PDE filter is defined as follows:

Definition 2. Any u' E PDEF{L, f•1, •} has the following proper-

ties:
(i) u0 c F(M), ia c F(Q x T) and

u a1=0 = (7)

(ii) L : F(M) -4 F(M) is an elliptic operator on Q and

(_ - L)u, 0, (xP) G M (8)09T

(iii) fP E F(M) vanishes at T/ = 0, i.e.

= u1ij) -0 (9)

In Definition 2 the (xfa, t) are exact solutions of the equations that

describe the system at the microscopic scale. These are expressed in the

form of the PDE system (9) defined on Q x T. i,From the prescribed

data u1,1=o = 0(xa, t) we can generate a one parameter family of fields

uQ(xa, t,71) on M by integrating (8) with respect to the scale parameter
,q. The operator L must be chosen such that the integration of (8), with

respect to qj, will damp out fluctuations in each ii" that cannot be resolved

on each scale associated with the parameter 71. We will refer to u'(xa, t, q)

for 77 > 0 generated by (8) as the filtered fields associated with solutions

of the system of PDE (9). The existence of each ii E F(Q x T) (cou-

pled with suitable boundary conditions for the filtered fields on 01t if Q
is bounded) is sufficient to guarantee the existence of the filtered fields

u 0 c PDEF{L, P, ii}.
An effective filter in its simplest form can be obtained using the space

Laplace operator
L=cd02

L x6c Oad (10)

where 6cd . 1 if c = d and 6cd = 0 if c $ d. For demonstration purposes

we assume (10) throughout. It should be noted that here we are employing

space filters. Definition 2 could be easily modified to include space and/or

time filters. The simplest time only filter can be obtained by setting L
02l/t 2 .

If Q = R 3 and each it" G F(Q x T) is bounded on Q x T then the

filtered fields obtained from the integration of (8) with respect to TI subject
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to the initial data (7) yields the Gaussian filter

u, Wa, t,) G (xa - za, 7) 0 (za, t)dzldZ2 dZ3  (11)

where
G(x', n) = (47r?7) 31 2exp[6brcb/(4,q)] (12)

Here the Gaussian filter is expressed in normalized form so that

o G(xI - za, 7)dzldz 2 dz3 = 1 (13)

For the case of bounded Q we must impose boundary conditions for the
filtered fields on OQ. The PDE filter, as it is defined here, will still be ef-
fective in damping out irresolvable fluctuations provided suitable boundary
conditions can be imposed.

As 77 is increased from 0 each f ' E F(M) may deviate from 0. We
introduce

fa=ja + a (14)

for some residual r' E F(M) such that

ral,7=0 = 0 (15)

Let e' C F(M) be defined by

097

where ao E F(M) is given by

0" = (L - U)fP (17)

ZFrom (14), (16) and (17) is obtained

097es = (N -- n)r- W f (18)

If u- E PDEF{L, f -, 0} then o = 0 and the vector field operator W

vanishes. Hence for ua E PDEF{L, fi, I•}

(a - L)ft = e a(19)

zFrom (9) and (15) we have

fa17=o = 0 (20)
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Consider first the case Q = R 3 . We see that each f satisfies the initial
value problem (19)-(20), where • replaces the traditional role taken by time
and t appears only as a parameter. If each e' G F(M) is bounded on M
the solution to this initial value problem can be obtained in the explicit
form (see Lecture 8 [3])

fW(xa, t,- ) JG(xa - a(za, t, ý)dzldz'dz3dý (21)

Thus for consistency we need to generate residuals r' such that, through
the identity (16), each e' is rendered sufficiently small.

If Q has a boundary, OQ, then we can assume that given some pre-
scription of u' and r' (and/or their spatial gradients) on the boundary
X2 we can set f'Ioa = 0. This along with the system (19)-(20) defines an
initial boundary value problem satisfied by each f0 . For an estimate of the
consistency error we can replace the expression (21) by some inequality.
For instance in terms of the L 2 (Q)-norm, ]l, we can obtain, for each
ao {1,...,N}, 7 C I and t G T,

II f 0 (.,?,) 11• o H e - - (22)

for some A > 0. The inequality also holds for the case A = 0.
If e = 0 on M then the residuals r' are known exactly. Thus, on M,

the filtered fields of the solutions of the PDE (9) and the exact residuals
r0 E F(M) satisfy the system

fa + ra = 0 (23)

- L)r' - a' = 0 (24)

where oa is given by (17). These are the exact macroscopic equations for the

filtered fields u' E PDEF{L, fP, i'l}. Written in this form it is clear where
the difficulties arise in constructing subgrid scale models for general nonlin-
ear PDE systems (9). In application one desires the solution computed only
on some slice Mi,=const. The presence of the term Or0 /Oq makes the solu-
tion of (24) impractical and some approximation for the residuals needs to
be introduced. The task is to generate r' such that e' is minimzed in (16).
The relationship (21) (or (22)) gives an estimate of how close (23) is satis-

fied by the filtered fields u' G PDEF{L, f 0 , 0 1} given any approximation
of the residuals r .

3. Approximation of the Residuals

We consider an approximation to (24), presented in [1] and [2], that is valid
for any slice Mi•=const for 0 < ij _< 70. Assume r' C F(M), such that
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rain=o = 0, satisfy on M

( - a'=0 (25)

for some u' E F(M), not necessarily in PDEF{L, Pm, 01}, and or given
by (17). A calculation based on (15), (16) and (25) gives

e-a = &I (r - 21=O) = , 2 ,a E (0, q) (26)

If &2r"/O1q 2 can be suitably bounded then we have e' = O(r7). ZFrom (21)
(or (22)) it follows that f,= - (q2) for u' E PDEF{L, fa, ii}.

In general any u' e PDEF{L, f0, i1} will not satisfy (23) exactly on
M if the residuals are not exact, i.e. they do not satisfy (24). In application
one generates u' E F(M) by enforcing (23) and introducing some approx-
imation for the residuals r' (for example obtained from (25)). In such a
case each u0 can only approximate members of PDEF{L, f , 01}.

4. Approximation of the Filtered Fields

Let u' E F(M) satisfy (i) and (iii) of Definition 2 and be generated from
(23) given some approximation of the residuals r' (for example through
(25)). Let ri= E PDEF{L, fU, ii }. Since u' is not a member of PDEF{ L, f',
01} there exists W' E F(M) satisfying (2) and we have

a - L)(u' - 0z) = (p' (27)09,

Consider first the case 0 is unbounded (i.e. Q = R 3 ). If (a E F(M) is
bounded on M then we obtain

(U -_ )(xa, t, 7) = f fJ G(x - za, 7 - ý)(pk(z' t, ')dz'd 2dz'dý (28)

For the case where 0 has a boundary aQ we assume that uloj = U'ai. As
before, in terms of the L2 (Q)-norm we can obtain, for each a C {1, ...,
q E I and t E T,

II(Ua - )(',n) I1 I (,• I e-A(n-0)d (29)

for some A > 0. The inequality also holds for the case A = 0. Both (28) and
(29) suggest that convergence of the approximations of the filtered fields
rests upon the boundedness of W".
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A calculation based on (16), (17) and (23) gives

wf = (30)

If the residuals r' are exact, then e' 0 and Wf 0 = 0. For this to
hold for arbitrary fP we must have W 0 (the zero operator). Hence

l' = 0 and u" C PDEF{L, PT, 1}. If each r' is not exact then each u',
generated from (23), will not be a filtered field and each (p' will not vanish
everywhere on M. Suppose that approximations for the residuals, r', can
be found rendering each e = 0((76)), where 5 is an order function with
respect to 71 such that lirn7m--o6((7) = 0. The problem is then transformed
into one of establishing the rate at which the operator W tends to the zero
operator as q7 -* 0.

5. Example: Reactive Flows

The ideas of the previous sections are developed in the context of general
nonlinear PDE. For demonstration purposes we assume an incompressible
fluid. The fa are associated with the three fluid momentum equations and
fn-1 is associated with the continuity or fluid mass conservation equation.
The system is augmented with fn-l+A (A = 1,..., Q) associated with Q
mass balance equations for the Q chemical components. In this case we
have N = n - 1 + Q and

Ua-- V a, Un-1 = p, Un-l+A = LOA, (A = 1,..., Q) (31)

where va (1 < a < 3) correspond to the fluid velocity components, p the
fluid pressure and wA (A 1, ... , Q) are the mass fractions of the chemical
components. We can write the functions f ' G F(M) corresponding to the
equations of motion of an incompressible fluid and chemical component
mass balance as

-a = Va + a ± 6 abp _ bvcRe),

?7-1 - Vbb (32)

fn- ]+A = W4A + (vbWA _ K ~bc) +

where Re is the Reynolds number, K+ is a coefficient associated with molec-
ular diffusion of the chemical components in the fluid medium and ýA =

SA(wL, ... , wQ) are the chemical source terms. It should be mentioned that

to regard (9) under the prescription (32) as an exact description of the
system at 77 = 0 is not entirely true since the fluid viscous and chemical
diffusion terms are only approximate models of nonlinear effects ocurring
at even smaller scales. For the sake of this demonstration we shall regard
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this formulation as representing the exact microscopic equations at 7 =- 0.
We should note that the viscous and diffusion terms are linear and do not
contribute to the residuals under filtering.

A calculation based on (17) and (32) leads to
= 2 cd (v% vad),b

an-1 = 0 (33)

an-l+A = 26cd (Vb A) + A= 5(,cW d),b+

where
,A = (L - U)gA (34)

is left in the generic form since we have not specified the source terms ,A

as explicit functions of the chemical components. We can assume that the
source terms ýA E F(M).

The identities (33) provide the source terms that appear in the system
(23)-(24) (or the approximate system (23), (25)). Since Orn- 1 = 0 we can set
rn-1 = 0 in (16) and hence the continuity equation will be invariant under
filtering, i.e. in- 1 = 0 on M. It is seen that each aa, for the incompressible
case, depend only on the velocities and their spatial partial derivatives.
The corresponding residuals, ra, will model the influence of the residual
stress/strain of the turbulent fluid.

The source terms an-l+A can be decomposed into two parts

n-1+A = n-1+A + on-l+A
a adisp + Ureac (35)

where nn-s+A ssosoated
adhsp is associated with dispersion and rn-l+A is associated with

the reaction kinetics. In the absence of reaction source terms (i.e. when
-A = 0) each ,•n-a+A vanish and the residuals, rn-l+A, will model the

influence of the dispersion of the chemical components in the flow field.
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